p-group, metabelian, nilpotent (class 2), monomial
Aliases: (C22×C8)⋊2C2, (C2×D4).5C4, C4.68(C2×D4), (C2×Q8).5C4, C22⋊C8⋊12C2, C2.4(C8○D4), (C2×C4).118D4, C4.8(C22⋊C4), (C2×M4(2))⋊7C2, (C2×C8).57C22, C23.16(C2×C4), (C2×C4).146C23, C22.1(C22⋊C4), (C22×C4).29C22, C22.42(C22×C4), (C2×C4).42(C2×C4), (C2×C4○D4).1C2, C2.11(C2×C22⋊C4), SmallGroup(64,89)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C22×C8)⋊C2
G = < a,b,c,d | a2=b2=c8=d2=1, ab=ba, ac=ca, dad=ac4, dcd=bc=cb, bd=db >
Subgroups: 121 in 79 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C22×C8, C2×M4(2), C2×C4○D4, (C22×C8)⋊C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2
Character table of (C22×C8)⋊C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | i | -i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | -i | i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | i | -i | -i | -i | i | i | -i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | -i | i | i | i | -i | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | i | -i | -i | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | -i | i | i | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 2ζ8 | 2ζ85 | 0 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 2ζ85 | 2ζ8 | 0 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 0 | 2ζ87 | 2ζ83 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 2ζ83 | 2ζ87 | 0 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 0 | 2ζ85 | 2ζ8 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 2ζ87 | 2ζ83 | 0 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 0 | 2ζ8 | 2ζ85 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 0 | 2ζ83 | 2ζ87 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 12)(2 18)(3 14)(4 20)(5 16)(6 22)(7 10)(8 24)(9 28)(11 30)(13 32)(15 26)(17 31)(19 25)(21 27)(23 29)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,18)(3,14)(4,20)(5,16)(6,22)(7,10)(8,24)(9,28)(11,30)(13,32)(15,26)(17,31)(19,25)(21,27)(23,29)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,18)(3,14)(4,20)(5,16)(6,22)(7,10)(8,24)(9,28)(11,30)(13,32)(15,26)(17,31)(19,25)(21,27)(23,29) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,12),(2,18),(3,14),(4,20),(5,16),(6,22),(7,10),(8,24),(9,28),(11,30),(13,32),(15,26),(17,31),(19,25),(21,27),(23,29)]])
(C22×C8)⋊C2 is a maximal subgroup of
C23.2C42 C23.3C42 (C22×C8)⋊C4 2+ 1+4.2C4 2+ 1+4⋊4C4 M4(2).40D4 C24.73(C2×C4) D4○(C22⋊C8) C42.261C23 C42.264C23 C42.265C23 C42.681C23 C42.266C23 M4(2)⋊22D4 M4(2)⋊23D4 C42.297C23 C42.298C23 C42.299C23 C42.300C23 C4○D4⋊D4 D4.(C2×D4) (C2×Q8)⋊16D4 Q8.(C2×D4) (C2×D4)⋊21D4 (C2×Q8)⋊17D4 (C2×D4).301D4 (C2×D4).302D4 (C2×D4).303D4 (C2×D4).304D4 C4.2+ 1+4 C4.142+ 1+4 C4.152+ 1+4 C4.162+ 1+4 C4.172+ 1+4 C4.182+ 1+4 C4.192+ 1+4
(C2×C4p).D4: C23.M4(2) C23.1M4(2) (C2×D4).Q8 M4(2).43D4 M4(2).44D4 M4(2).24D4 C42.428D4 C42.107D4 ...
C2p.(C8○D4): C42.260C23 C42.678C23 C42.694C23 C42.301C23 D6⋊C8⋊C2 C22⋊C8⋊D5 (C2×D4).7F5 (C2×D4).8F5 ...
(C22×C8)⋊C2 is a maximal quotient of
C23⋊C8⋊C2 C42.395D4 C42.396D4 C24.(C2×C4) C24.45(C2×C4) C42.372D4 C23.29C42 C42.379D4 C24.51(C2×C4) C42.95D4 C24.53(C2×C4) C23.22M4(2) C23⋊2M4(2) C42.325D4 C42.109D4 C42.327D4 C42.120D4
D2p⋊C8⋊C2: C42.45D4 C42.373D4 C42.47D4 C42.400D4 C42.315D4 C42.305D4 C42.52D4 C42.53D4 ...
C2p.(C8○D4): C42.46D4 C42.401D4 C42.316D4 C42.54D4 (C6×D4).11C4 C22⋊C8⋊D5 (C22×C8)⋊D5 C4.89(C2×D20) ...
Matrix representation of (C22×C8)⋊C2 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 9 | 0 | 0 |
9 | 0 | 0 | 0 |
0 | 0 | 15 | 15 |
0 | 0 | 10 | 2 |
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 2 | 1 |
G:=sub<GL(4,GF(17))| [0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,9,0,0,9,0,0,0,0,0,15,10,0,0,15,2],[0,4,0,0,13,0,0,0,0,0,16,2,0,0,0,1] >;
(C22×C8)⋊C2 in GAP, Magma, Sage, TeX
(C_2^2\times C_8)\rtimes C_2
% in TeX
G:=Group("(C2^2xC8):C2");
// GroupNames label
G:=SmallGroup(64,89);
// by ID
G=gap.SmallGroup(64,89);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,332,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*c^4,d*c*d=b*c=c*b,b*d=d*b>;
// generators/relations
Export